As always Robert, thanks for your insights.
1. drying to the interior in cold climates: yes, this assembly is designed to do just that and it's important to mention that this summertime drying is enhanced by not having active air conditioning during the conventional cooling period. I don't have a strong preference for which direction an assembly is designed to dry; I have a strong preference that it be designed to dry in at least one direction. If we could get all builders and architects to do that, I would be really happy.
2. location of air barrier(s) - we get this question all the time, as I am sure you do too: which location is better, exterior or interior for the air barrier. And again: one, regardless of location, is better than none, and two (exterior and interior) is ideal. I think that given the choice, I prefer an exterior air barrier because it is an easier location to get continuity and it does a better job of preventing wind washing at corners, but I also agree with your point: an interior air barrier does the lion's share of keeping interior wintertime moisture out the exterior assemblies.
3. spray foam blowing agents: a very hard one to argue. Closed cell spray foam will hopefully soon have a blowing agent other than the high global warming potential HFC 245 fa, but until then, you pay a big penalty right out of the gate. And with no vapor retarder, great care must be taken in balancing reduced thickness of the spray foam in comparison to the depth of the air and vapor permeable cavity fill, in cold climates (the first condensing surface of this assembly is the interior surface of the spray foam).
Best - Peter
Add new comment
To post a comment, you need to register for a BuildingGreen Basic membership (free) or login to your existing profile.