I live in the SE U.S. and have always thought that running a dehumidifier and raising the thermostat on the A/C a few degrees (say 78 vs. 75) was better for the environment than not running a dehumidifier at all and keeping the thermostat down. In other words, how does the electricity consumption of a dehumdifier (small one) compare to that of a forced air A/C unit?
Blog Post
Dehumidifiers
Last week, after reviewing a little physics regarding condensation and latent heat, I described how air conditioners remove unwanted humidity. This week I'll examine how dehumidifiers work in removing moisture and when it makes sense to use them. Like air conditioners, dehumidifiers remove moisture by condensing water vapor out of the indoor air. While an air conditioner dumps the warm air that's produced through that condensation process (latent heat) outdoors, a dehumidifier doesn't get rid of that heat. Instead, releases the warm air into the space where it's is located. In other words, while there's a cooling process involved with dehumidifier operation (chilled coils on which condensate collects), that cooling of the air is offset by the heat of vaporization released by the condensation process. Due to the use of a blower and pump in the system, a dehumidifier actually warms a space somewhat, though by reducing relative humidity levels in a house, it may help you feel more comfortable. When a dehumidifier makes sense Dehumidifiers are optimized to remove moisture rather than to cool air, so they work better at that function than air conditioners. It makes sense to install a dehumidifier when the relative humidity gets high enough to cause significant problems--like growing mold in the home. Most experts suggest that indoor relative humidity levels should be kept below 50 or 60 percent. Dehumidifiers are effective at removing moisture when cooling isn't also called for--such as during spring and fall when there might be high humidity but cool enough temperatures that air conditioning isn't warranted. They can also make sense in highly energy-efficient homes with good cooling-load-avoidance strategies, such as shade trees on the east and west, awnings or overhangs above windows, and very energy-efficient lights and appliances. In these spaces, it may be important to get rid of excess moisture, while cooling isn't needed. That said, the most energy-conserving choice is to avoid using a dehumidifier (or air conditioner) by controlling unwanted moisture sources (see my blog from two weeks ago). A lot of materials in a home, such as wood, naturally absorb moisture during the summer months and then release that moisture in the drier winter months; that sort of moisture cycling is acceptable in most houses. Choosing a dehumidifier Demumidifiers have either a plastic bucket that has to be emptied when full (an automatic shut-off prevents overflow), or a drain line for dumping condensate into a floor drain or sump. Look for a model with a humidistat that automatically turns it on and off, depending on the relative humidity. Dehumidifiers are rated by their moisture-removal capacity (usually in pints per day) and their Energy Factor in liters of water removed per kilowatt-hour (kWh) of electricity consumption. The Energy Factor is typically higher for larger dehumidifiers that have greater moisture-removal capacity. To carry an Energy Star label, dehumidifiers must meet the following Energy Factor requirements (the odd mix of English pints and metric liters in the standards may be part of a plot to keep us confused!): Minimum Energy Factor (l/kWh) based on water-removal capacity:
- Less than 25 pints/day = 1.20
- 25 to 35 pints/day = 1.40
- 35 to 45 pints/day = 1.50
- 45 to 54 pints/day = 1.60
- 54 to 75 pints/day = 1.80
- 75 to 185 pints/day = 2.50
The most energy-efficient dehumidifiers today are made by Therma-Stor Products, of Madison, Wisconsin. The company offers a wide range of both free-standing and ducted dehumidifiers that are typically integrated into forced-air distributions systems. Standard stand-alone dehumidifiers typically cost $150 to $300, while top-efficiency models, such as most of those from Therma-Stor, will cost over $1,000. Installing and using a dehumidifier Stand-alone dehumidifiers are typically installed in the basement or crawl space, though they may also be located in a utility closet in the living space. As you think about placement, be aware that dehumidifiers have fans, which homeowners may find annoying. Also, for efficient operation, be sure that air can freely circulate around a dehumidifier. If you have an older model without a humidistat to automatically turn it on and off, buy a digital hydrometer (relative humidity meter) and turn on the dehumidifier when the relative humidity gets to an uncomfortable level--say, around 60% relative humidity. Even with a humidistat, it's not a bad idea to buy a hygrometer to make sure that the dehumidifier's humidistat is working properly; these can be significantly mis-calibrated. If the outdoor air is fairly humid and you decide to turn on a dehumidifier, it usually makes sense to close up the house--so your dehumidifier won't have to work so hard just to keep up with incoming humid air. This has to be balanced with the benefit of cool, outdoor airflow through the house, though. It will probably take some practice to balance the use of dehumidification, ventilation, and mechanical air conditioning. Follow manufacturers' instructions on keeping a dehumidifiers clean to ensure efficient operation. Final thoughts Dehumidifiers use quite a lot of energy--many consume over 600 watts while they are operating--which can be for long periods of time in the summer months. Use of a dehumidifier can easily be the largest electricity user in a home during the months it is used (especially when air conditioning is not being used), so avoiding or minimizing the need for dehumidification should be a high priority. An engineer friend in Keene, New Hampshire, tells me that during the two months of the year he uses a dehumidifier, it increases his electric consumption by 63%, and the 250 kilowatt-hours he uses each month requires roughly $3,000 worth of photovoltaic panels to produce. In addition to this Energy Solutions blog, Alex writes the weekly blog on BuildingGreen.com: "Alex's Cool Product of the Week," which profiles an interesting new green building product each week. Last week's blog was on Wasco's new triple-glazed skylight that meets the 30-30 rule for the federal tax credit. You can sign up to receive notices of these blogs by e-mail--on the BuildingGreen.com blog page enter your e-mail address in the upper right corner. Alex is founder of BuildingGreen, LLC and executive editor of Environmental Building News. To keep up with his latest articles and musings, you can sign up for his Twitter feed.
Published July 27, 2010 Permalink Citation
(2010, July 27). Dehumidifiers. Retrieved from https://www.buildinggreen.com/news-article/dehumidifiers
Comments
It's a good idea to use a deh
It's a good idea to use a dehumidifier in the areas that have high humidity, but it's just not enough if it gets over about 82 degrees. Most people start to get uncomfortable and that point and need air conditioners.
Could be good to purchase, bu
Could be good to purchase, but make sure you find the right balance for your home. The costs could definitely out weigh the positives here. Keep your house cooler with better insulation, planting shading trees, and keeping sun facing windows covered during those more heat extreme months.
AC units dehumidify AND cool
AC units dehumidify AND cool the air. You only need one unit to make your home a lot more comfortable. Well, depending on size.
Add new comment
To post a comment, you need to register for a BuildingGreen Basic membership (free) or login to your existing profile.